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Abstract

The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-B fluid in the annu-
lar region between two concentric spheres. The inner sphere rotates with a uniform angular velocity while
the outer sphere is kept at rest. Moreover, the two spherical boundaries are maintained at fixed temperature
values. Hence, the fluid is effect by two heat sources; namely, the viscous heating and the temperature gra-
dient between the two spheres. The viscoelasticity of the fluid is assumed to dominate the inertia such that
the latter can be neglected. An approximate analytical solution of the energy and momentum equations is
obtained through the expansion of the dynamical fields in power series of Nahme number.
The analysis show that, the temperature variation due to the external source appears in the zero order solu-
tion and its effect extends to the fluid velocity distribution up to present second order. Viscous heating con-
tributes in the first and second order solutions. In contrast to isothermal case, a first order axial velocity and
a second order stream function fields has been appeared. Moreover, at higher orders the temperature dis-
tribution depends on the gap width between the two spheres. Finally, there exist a thermal distribution of
positive and negative values depend on their positions in the domain region between the two spheres.
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1. Introduction

Rheological measurements of the parameters of the vis-

coelastic fluids are very important in the last few decades

due to the large width using of this kind of fluids in indus-

try. Many instruments that are used to detect these param-

eters stand on the postulate that independence of the fluid

parameters on a temperature in spite of an appearance of

viscous heating due to a conversion of mechanical energy

into thermal energy inside the fluid. In fact the fluid param-

eters, such as viscosity and relaxation time are very sen-

sitive to temperature changes. Moreover, the fluid suffering

from a large temperature variation in industry due to forced

mechanical operations. This application increases the gap

between the measured parameters in laboratory and real

parameters control the motion in industry. Hence, the tem-

perature is considered as a source of error in rheological

measurements. So the aim of the present work is to deduce

the temperature effect on the fluid parameters not only due

to viscous heating but also in application of external tem-

perature source on the fluid boundaries. The later one; i.e.

the external temperature source in fluid motion enables us

to study the behavior of the fluid and parameter variation

due to a wide range of temperature. This helps us to

improve the control of the fluid motion in applications

(Ferry, 1980).

It is interest to show that numerous works have been

dealt with spherical Couette flow of Oldroyd-B fluid iso-

thermally, both theoretically and experimentally. Yamagu-

chi et al. (1997a, 1997b, 1999) treated the present problem

for Oldroyd-B fluid. Abu-El Hassan (2006, 2007a) inves-

tigated the same problem by using the successive approx-

imate method for Oldroyd 8-constant constitutive model

where Oldroyd-B fluid is taken as a special case. The solu-

tion shows an appearance of axial velocities in zero and

second order approximation as well as a secondary flow in

first order solution only.

Recently, Abu-El Hassan et. al (2007b) investigated the

present boundary value problem (B.V.P.) for viscous heat-

ing only. The analysis show that two additional contributed

terms had appeared due to viscous heating ; namely, a first

order axial-velocity component and a second order stream

function which are not exist in isothermal case. Up to the

first order, the behavior of all viscoelastic fluids are iden-

tical. The difference appears in second order solution ; spe-

cially for temperature profile which depends on the gap

width between the two spheres. Noteworthy, the temper-

ature growth due to viscous heating is of order one degree
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In this paper we study spherical Couette flow of fluid

particles with the influence of temperature profile due to

viscous heating effect and the temperature-difference

between the two boundaries. The main important of an

external temperature source in fluid is giving us a chance

to study the behavior of the fluid in a large width of a tem-

perature change. Hence, the present B.V.P. is concerned

with non-isothermal steady shear flow of Oldroyd-B fluid

in the annular region between two concentric spheres of

radii R1 and R2 (R2 R1). The two inner and outer spheres

are maintained at different temperatures T1 and T2 (T1 T2).

Moreover, the inner sphere rotates with a uniform angular

velocity ω about the z-axis centered at the origin of the sys-

tem and the outer sphere is at rest. The successive approx-

imate method of solution is performed through the

expansion of the dynamical variables in power series of

Nahme number. Two viscoelastic fluids with different

rheological properties has been investigated as test fluids.

2. Governing equations

In dimensional form, the equations governing the steady

state flow of an incompressible viscoelastic fluid are stated

as follows:

The continuity equation

(2-1)

where  is the velocity field. In terms of spherical polar

coordinate ( , ϑ, φ), the velocity field takes the form

(2-2)

where , and  are the unit base vectors in r, ϑ and ϕ

axis, respectively. The index ''~'' refers to the dimensional

quantities.

The momentum equation is given by

(2-3)

where  is the pressure and  is the stress tensor. The

stress tensor can be written as

 
(2-4)

A non-isothermal version of Oldroyd-B model based on

the pseudo-time hypothesis (Bird et al., 1987; Bird et al.,

1995) gives the following equation for the extra stress 

(2-5)

Where δ is the dimensionless thermal sensitivity defined

by

(2-6)

Θ is the dimensionless temperature related to the ref-

erence temperature  by

(2-7)

ηs and ηp are solvent and polymer viscosities; respec-

tively defined by Nahme type law (Nahme, 1940; Kears-

ley, 1962; Turian, 1965; Becker and McKinley, 2000)

ηs=ηs0e
−Θ and ηp=ηp0e

−Θ (2-8)

and λ is the relaxation time given as

(2-9)

ηs0, ηp0 and λ0 are solvent and polymer viscosities and

relaxation time, measured at ; respectively.

For simplicity, one may neglect the inertia (Bohme,

1987; Bird, 1987) such that the energy equation for the

temperature  is given as

(2-10)

where k is the thermal conductivity of the fluid.

It is more convenient to introduce the following dimen-

sionless variables

, , , , , 

(2-11)

Hence, the governing equations in non-dimensional form

can be written in the following manner. The constitutive

equation

(2-12)

where De=λ0ω is the Debora number. The momentum

equation

(2-13)

and the energy equation

(2-14)

where the Nahme number Na is given as

(2-15)

3. Boundary Conditions

The boundary conditions are no slip at the surface of the

two spheres which has different non-distributed tempera-

tures, hence

 and  at (3-1)

where a=R2/R1 is the geometrical parameter ratio and Θ1
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and Θ2 are the dimensionless temperature of the spherical

boundaries.

4. Method of solution

Using Eq. (2-12) into Eq. (2-13), the momentum equa-

tion can be written in the form

(4-1)

where

(4-2)

and . (4-3)

The momentum equation, Eq. (4-1), may be decomposed

into a scalar equation governing the ϕ− component and a

vector equation including the r− and ϑ− components and

then simplified to take the form

(4-4)

(4-5)

where

(4-6)

 with its components (4-7 a)

,  and

(4-7 b)

and

(4-8 a)

with its components

(4-8 b)

Using the stream function Ψ which can be defined as

(4-9)

and taking the curl of Eq.(4-5) one gets

(4-10)

where

(4-11)

For Θ/δ 1 we can make use of the expansions

(4-12 a)

(4-12 b)

and

, Θs=(Θ1+Θ2)/2(4-12 c)

such that

1 or (4-12 d)

Hence, the energy and constitutive equations for extra

stress are ;respectively,

=0 (4-13)

(4-14)

where  . The problem now is to solve Eqs. (4-4),

(4-10) and (4-13). Employing the constitutive equation ,

Eq. (4-14), in order to find the axial velocity, the stream

function and the temperature profile. The solution is per-

formed by using the method of successive approximation

where the variable functions , , , Ψ and Θ are

expanded in power series with respect to the Nahme num-

ber in the form

A=A(0)+Na A(1)+Na2 A(2)+... (4-15)

with A is any one of the above variable functions.

4.1. solution of zero order approximation
The governing set of equations in this case is reduced to

(4-16)

(4-17)

(4-18)
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with the boundary conditions

 at r=1 , a (4-19 a)

Θ(0) =Θ1, Θ2 at r=1 , a (4-19 b)

 at r=1 , a (4-19 c)

Equation (4-16) shows that  and  are just operators

acting on Ψ (0) so the solution subjected to the boundary

conditions (4-19 a) gives

Ψ (0) =0 (4-20)

The solution of the temperature profile Θ(0), Eq. (4-17),

with the boundary conditions, Eq. (4-19 b), is

 , (4-21)

where the c’s are determined from the boundary condi-

tions.

For  using Eqs. (4-7),we can see that  in case

of relatively small temperature difference, Eqs.(4-12d),

between the two spheres so that Eq. (4-18) reduces to

(4-22)

The solution of this equation which satisfy boundary con-

ditions (4-19 c) is given as

. (4-23)

This is the classical Newtonian velocity field.

4.2. solution of first order approximation
The governing set of equations in this case is

(4-24)

(4-25)

(4-26)

and the stress tensor in first order approximation is 

(4-27)

with the boundary conditions

 at r=0, 1 (4-28 a)

Θ(1) =0 at r=0, 1 (4-28 b)

 at r=0, 1 (4-28c)

Equations (4-24) and (4-25) can be simplified to take the

form

(4-29)

 (4-30)

where

(4-31 a)

(4-31 b)

with P0 and P2 are the associated Lagender polynomials.

For Ψ (1), the general solution of Eq.(4-29) is written as

sin2ϑ cosϑ (4-32)

The parameters c2 up to c5 can be determined from the

boundary conditions Eq. (4-28 a), see on App. A.

Also the general solution of Eq. (4-30) for Θ(1) is

(4-33)

the c’s parameters are also determined from the boundary

conditions, Eq. (4-28 b), see App. A. Using the solution for

Θ(1), the differential equation that governing the first order

axial velocity  reduced to

sinϑ (4-34)

Hence, the general solution for  is given as

(4-35)

The c’s parameters can be determined from the boundary

conditions Eq. (4-28 c), see App. A.

4.3. solution of second order approximation
The governing set of equations in this case is outlined as

follows
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(4-36)

(4-37)

with the boundary conditions

 at r=0, 1 (4-38 a)

Θ(2) =0 at r=0, 1 (4-38 b)

The solution of Eq.(4-36) for the second order stream

function Ψ (2), subjected to the boundary conditions Eq. (4-

38 a), can be treated as in the first order case. Hence the

general solution of Ψ (2) is

(4-39)

where

(4-40 a)

(4-40 b)

The second order temperature profile Θ (2), Eq. (4-37),

subjected to the boundary conditions Eq. (4-38 b) can be

solved as follows

(4-41)

where

(4-42 a)

(4-42b)

(4-42 c)

The parameters a’s, and b’s are determined by using the

boundary conditions (4-38); App. A.

5. Discussion

In the present work the non-isothermal steady state shear

flow of an incompressible Oldroyd-B fluid in the annular

region between two concentric spheres R1 and R2 (R2 R1)

is investigated theoretically. The inner sphere rotates with

an angular velocity ω about z-axis which passes through

the center of the spheres and the outer sphere is kept at rest.

The two spherical shells R1 and R2 are maintained at fixed

temperatures T1 and T2 (T1 >T2) ; respectively. The vis-

coelasticity of the fluid is assumed to dominate the inertia

such that the latter can be neglected. Using the constitutive

equation of the non-isothermal Oldroyd-B fluid, an

approximate analytical solution of the energy and momen-

tum equations is obtained through expanding the dynam-

ical variables in power series of Naham number.

In order to investigate the effect of viscosity and elas-

ticity on the fluid rheology, the parameters of two test flu-

ids are used. Boger fluid is considered as one of them. This

fluid first described in details by Boger and co-workers

(2000). It consists of 0.05% solution of monodisperse poly-

styrene (PS) with a polydispersities of 1.05 and mass aver-

age molecular weights of 6.5×106 g/mol. The parameters

related to this fluid are ηp=12 Pa ·s, ηs=34 Pa ·s, λ0=

17.7 s, k=0.11 W/m ·k, Τ0=298 K and δ=68, (Boger,

2000; Pothstein and McKinley, 1977). The resulting solu-

tion falls into a class of fluids that are highly elastic. The

large relaxation time and large viscosity of the fluid elim-

inates its inertial effects and also permits the study of vis-

coelastic flow at high Deborah numbers. Moreover, we

notice from the experimental point of view, that this fluid

has a constant viscosity and first normal stress and zero

second normal stress (obeys Oldroyd-B fluid). This fluid

will be assigned as (Fluid I) in the present analysis. We will

choose the second fluid with a relatively small relaxation

time to show the effect of elasticity on its motion. This fluid

is 0.2 wt% aqueous solution of PAA-water solution (E-10

Allied Colloids (UK) Ltd), (Nakamura et al., 1995). The

parameters related to this fluid are ηp=1.3125 Pa ·s,
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Fig. 1. Fluid I The velocity , a=1.25 in ρz- plane  and in 3-

dim. configuration.
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ηs=0.1875 Pa ·s, λ0= 2 s, k=0.2 W/m ·k, Τ0=298 K, and δ

has chosen as δ=30. This fluid will be assigned as (Fluid II).

In zero order solution, the Newtonian field (r,ϑ),Eq.

(4-23), is independent of the parameters of the fluid which

means that this velocity is being the same as for all types

of fluids (Ferry, 1980; Kearsley, 1962). The solution 

as a function of r and ϑ in ρz- plane and in 3-dim con-

figuration are shown in Figs. (1) and (2) in case of a=1.25,

and a=2; respectively.

These figures show that, the geometrical ratio "a" doesn't

effect the general behavior of the velocity field in zero

order approximation. Moreover, there is no secondary

flow, i.e. Ψ (0)(r,ϑ)=0. For the temperature equation the

solution shows that the fluid behaves like a solid conductor

in which the temperature profile is in the redial direction.

For the first order approximation, the solution for the

stream lines given in Eq. (4-32) ; i.e. Ψ (1)(r,ϑ)=const. in

ρz- plane as well as in 3-dim. configuration for a=1.25,

and a=2, of the two fluids are shown in Figs. (3) to (6).

It is well known that, this secondary flow is a normal

stress-induced phenomena. The flow field of the stream

function Ψ (1) divides the annular region between the two

spheres into four similar parts. In fact, the fluid moves

toward the inner sphere near the equator and away from it

near the axis of rotation for the two fluids in case of a=2

as shown in Figs. (4) and (6) but the test fluids change their

directions to the opposite side in the case of small gap

widths, Figs. (3) and (5). In the same manner we notice

that the stream function decreases as the gap width

between the two spheres decreases and then change its

direction depending on the value of 'a'. Also from Fig. (4),

an appearance of another loops in the vicinity of the inner

sphere that move in opposite direction of their behind

loops. The existence of these loops can be attributed to the

highly relaxation time value of Boger fluid. It is more

interested to notice that the change of direction of the sec-

ondary flow is due to the effect of the temperature gradient

in the zero order solution (Hassan, 2007b), which is not

Vϕ

0( )

Vϕ

0( )

Fig. 2. Fluid I The velocity ,  a=2 in ρz- plane  and in 3-

dim. configuration.

Vϕ

0( )

Fig. 3. Fluid I, The stream function Ψ (1), a=1.25 in ρz- plane  and

in 3- dim. configuration.

Fig. 4. Fluid I, The stream function Ψ (1), a=2 in ρz- plane and in

3- dim. configuration.

Fig. 5. Fluid II, The stream function Ψ (1), a=1.25 in ρz- plane

and in 3- dim. configuration.

Fig. 6. Fluid II, The stream function Ψ (1), a=2 in ρz- plane  and

in 3- dim. configuration.

Fig. 7. Fluid I. The temperature field Θ(1), a = 1.25 in ρz- plane

and in 3- dim. configuration.
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observed in case of non-external temperature source.

The First order temperature distribution Θ(1)(r,ϑ) as func-

tion of r and ϑ in ρz- plane and in 3-dim. configuration, for

a=1.25, and a=2 of the Fluid I are shown; respectively in

Figs. (7) and (8).

The first order temperature distribution of the two fluids

is the same. This solution is an effect of the viscous heat-

ing. Moreover, The temperature due to external sources is

delivered in the zero order solution only while the solutions

in higher orders are suffering from this effect beside vis-

cous heating. The large value of the contours Θ(1) =const.

appear at the equator such that the temperature decreases

as moving towards the spherical boundaries. It seams like

sources of temperature at that points and flow away from

them. The generation of the heat in this order of approx-

imation tends to be near the inner sphere. In addition, the

geometrical ratio 'a' doesn't effect the general behavior of

the temperature distribution.

The first order solution of the axial velocity (r,ϑ) as

a function of r and ϑ in ρz- plane and in 3-dim. config-

uration for Fluid I in case of a=1.25, and a=2, are shown

in Figs. (9) and (10).

Also in this case, the distribution for the two cases is the

same as for the test Fluid II. This solution which doesn't

appear in isothermal case is an effect of presence of vis-

cous heating. The contribution of the external source app-

ears in the velocity value and not in its distribution. As

shown in these figures, the velocity (r,ϑ divides the

gap width between the two spheres into two similar parts.

The eddy loops that found in the vicinity of the inner

sphere move in the same direction as the primary velocity,

but that in the nearest of the outer sphere move in the

opposite side. Hence, there is a fluid-stagnant layer in this

order of approximation between these two kind of loops

with zero velocity, i.e. a stationary layer. The maxima of

the velocity is being at the center of these two eddy loops

on the equator and the velocity slow down in a direction

far away from that center tends to zero at the stationary

layer as well as on the two spherical boundaries. Moreover,

the velocity distribution in this case is independent of the

geometrical ratio 'a'.

In the second order approximation, the solution for the

stream function Ψ (2)(r,ϑ) is presented. The stream lines

Ψ (2)=const. in ρz- plane and in 3-dim. configuration, in

case of a=1.25, and a=2 for the two test fluids are shown

in Figs. (11) to (14).

At present, these figures show that the situation is mainly

different. For Fluid I, the flow field is in the opposite of

Vϕ

1( )

Vϕ

1( )

Fig. 8. Fluid I. The temperature field Θ(1), a=2 in ρz- plane  and

in 3- dim. configuration.

Fig. 9. Fluid I. The velocity field , a=1.25 in ρz- plane  and

in 3- dim. configuration.

Vϕ

0( )

Fig. 10. Fluid I. The velocity field , a=2 in ρz- plane  and in

3- dim. configuration.

Vϕ

0( )

Fig. 11. Fluid I, The stream function Ψ (2), a=1.25 in ρz- plane

and in 3- dim. configuration.

Fig. 12. Fluid I, The stream function Ψ (2), a=2 in ρz- plane  and

in 3- dim. configuration.
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that in the first order and there is an appearance of a dra-

matic change in the flow field in the small gap which dies

for large 'a'. This means that the gap width has an effect in

the motion of this fluid. For Fluid II, the flow is in the

opposite direction of that in the cases of isothermal or in

presence of viscous heating. Hence, the gap width doesn't

effect the flow regime.

As a result of this analysis we can not expect an exact

motion or a general behavior of the Oldroyd-B fluid in the

presence of external heat source. This is attributed to the

effect of temperature dependence of its relaxation time.

Finally, the second order temperature solution is pre-

sented. The distribution Θ(2)(r,ϑ) in ρz- plane and in 3-dim.

configuration in case of a=1.25, and a=2 for the two con-

sidered fluids are shown in Figs. (15) to (18); respectively.

As shown in these figures, the temperature distribution

depend on the gap width 'a' between the two spheres.

Moreover, there exist a thermal distribution of positive (the

shaded regions) and negative values depend on their posi-

tions in the domain region between the two spheres. The

appearance of the negative value can be attributed to the

expansion used in this solution.

6. Conclusion

The present work is concerned with non-isothermal

spherical Couette flow of Oldroyd-B fluid in the annular

region between two concentric spheres. The inner sphere

rotates with a constant angular velocity while the outer

sphere is kept at rest. The two spherical boundaries are

maintained at different temperature values. Hence, the fluid

is effected by two temperature sources; namely, viscous

heating and external one. Using successive approximate

method, a solution is obtained through the expansion of the

dynamical fields in power series of Nahme number. Two

viscoelastic fluids with different rheological properties are

Fig. 13. Fluid II, The stream function Ψ (1), a=1.25 in ρz- plane

and in 3- dim. configuration.

Fig. 14. Fluid II, The stream function Ψ (2), a=2 in ρz- plane  and

in 3- dim. configuration.

Fig. 15. Fluid I. The temperature field Θ(2), a=1.25 in ρz- plane

and in 3- dim. configuration.

Fig. 16. Fluid I. The temperature field Θ(2), a=2 in ρz- plane  and

in 3- dim. configuration.

Fig. 17. Fluid II. The temperature field Θ(2), a=1.25 in ρz- plane

and in 3- dim. configuration.

Fig. 18. Fluid II. The temperature field Θ(2), a=2 in ρz- plane

and in 3- dim. configuration.
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considered. The analysis show that a primary flow in zero

order solution is independent of the fluid parameters, so it

is the same for all fluids. In the same order, the solution for

the extra temperature is also appears while the solution for

viscous heating emerges in higher orders. In first order

solution the direction of the secondary flow depend on the

gap width between the two spheres. The axial velocity and

temperature profile are the same for the two test fluids. The

situation is mainly different in second order solution in

which the secondary flow has no fixed behavior due to the

complex dependence of the relaxation time on temperature.

Also the temperature distribution depends on the fluid

parameters as well as the gap width between the two

spheres. Moreover, there is apparent regions of positive

and negative values, the negative distribution seams like a

correction for the first order temperature.
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